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Pattern Formation Properties of Cellular Neural Networks 

Pattern formation in the CNN is a result of the mechanism of symmetry breaking around an 
unstable equilibrium. The symmetry can be broken by either small random noise, a 'seed' or site 
defect, or a systematic disturbance. The parameters which affect the type of pattern formed are 
the bias and interconnection weights. 

Random Perturbation 

When the symmetry breaking is introduced as a small random perturbation, our research has led 
us to identify the following three epochs of behavior in the time formation of patterns. 

• Linear System leading to noise, shaping. 

• Separation of Spatial Frequencies and Phases leading to meta-stability. 

• Boundary Negotiation leading to stability. 

Various observations and theoretical results have been made for each of these epochs, which are 
summarized below: 

Linear System 

If the system is halted at the moment when the first cell of the array enters the saturation region, 
the linear system theory will be exact. The states at this time will be the result of a linear filtering 
operation which can be found in terms of the template weights. Such a filtering operation can be 
understood to enhance certain spatial frequencies while suppressing others. 

Motif Separation 

In regions where a significant number of cells have reached saturation, the linear analysis does not 
even hold approximately. At this point, arbitrary combinations of the unstable modes can no longer 
be maintained. The states begin to separate themselves into regions with motifs that are at least 
locally stable. These regions grow until their boundaries meet with other regions of different motif. 
At this point the system is considered to be meta-stable in the sense that most cells are unchanging 
in time (the interior cells of the regions) and only the boundaries between regions are moving. 

It is difficult to determine what the possible meta-stable motifs are. We have shown that if any 
combination of equally unstable modes has a purely binary representation, then in the saturation 
region, that motif is stable, at least in the sense that a big enough patch of it will not change unless 
outside influences force it to. It is not certain that a finite array containing this motif would be 
stable, however. 

For a 3 x 3 template of weights (i.e. immediate neighbors) we have fully characterized the stable 
motifs. In addition, simple inequalities allow the determination of the dominant stable motif, which 
will generally arise from random initial conditions. 

Boundary Negotiation 

Even though the array has separated into regions that are locally stable, the boundary between 
them may prove to be unstable. Thus begins a long process where most of the cells in the array are 
not changing in time, but slowly the boundaries are negotiated.  In some cases there may not be 
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any acceptable boundary, and eventually one motif must cover the whole array. The whole process 
may take many order of magnitudes longer than the first two steps. 

Bias 

We have studied some of the effects of using the bias term in the dynamics. The bias changes the 
allowed meta-stable motifs. For instance, we have used this fact to demonstrate the formation of 
'stripes' of a tiger when no bias is used and the 'spots' of a leopard when bias is added. Varying 
the bias in time can simulate some of the effects of striping patterns in the angelfish. Finally, we 
have begun investigations into the use of space-varying bias for image processing applications such 
as fingerprint enhancement. 

Site Defects 

Finally, we have investigated the mechanism involved in the production of spiral and target patterns 
in the CNN by using 'seeds' to break the unstable equilibrium. When one site of the array is 
disturbed from equilibrium, a pattern begins propagating outward. This will usually take the form 
of a circular blob containing the dominant motif. However, when more than one seed is used in the 
same array, these motifs must join up in a consistent way, which can cause the formation of spirals. 
The patterns formed are reminiscient of the aggregate growths of bacteria colonies, for instance. 
Furthermore, we have discoved template values which exhibit dendritic growth from a site defect, 
a previously unknown phenomena in the first-order CNN cell array. 

Linear Spatial Convolution 

As linear filtering is the workhorse of image processing algorithms, the question of whether the 
CNNUM can implement any convolution and how to do so is important. We have shown how these 
methods can be applied to multiscale image processing. 

It has long been understood that the B-template of the simple CNN performs a correlation 
(reflected convolution) with the input image. However, due to implementation concerns the B- 
template, and therefore the convolution kernel, is restricted to be small in size - typically 3x3. By 
also using the A-template, or by cascading B-template operations, large kernel convolutions can 
be performed but the coefficients of the impulse response cannot be arbitrarily specified. However, 
the need to exactly specify a large convolution mask arises in many situations, such as template 
matching for object detection, dilation or erosion by large structuring elements, and interpolation. 

Canonical Form for General FIR Filtering 

We have developed a canonical form for the possible spatial linear filtering operations which can be 
performed on the CNN Universal Machine, when running a finite algorithm using single-transient 
CNN spatial convolution and image addition. Convolution by arbitrary kernels of any finite size can 
be shown to be implementable by algorithms of this form using only 3x3 templates. Equivalently 
it can be considered a general form capable of implementing arbitrarily large B-template effects by 
using only 3x3 connectivity. 

Previous methods for performing arbitrary convolution, which involved either summations of 
multiple applications of small B-templates or partitioning and shifting can be unified under this 
form. When implementing a desired convolution with this form the choice of templates is under- 
determined and either of these previous methods can be used to demonstrate completeness.  We 



have produced a CNNUM algorithm for implementing the partition-shift approach with special 
concern given to practical issues of addition and accuracy. It was presented both as a constructive 
proof of the general convolution capabilities of the CNNUM and as a practical approach in some 
cases. The unified form includes a broader class of implementations than, for instance, those that 
use the A-template for IIR filtering, by combining multiple single-transient filtering operations 
through image addition and cascaded convolution (i.e. serial-parallel forms). 

Multiscale Analysis 

As an interesting application of linear filtering on the CNN Universal Machine, our work has 
also included the investigation of some methods for generating multi-scale representations of gray- 
scale imagery on the CNNUM. The method uses time-indexed CNN spatial filtering operations 
(analogous to 'stopped diffusion'), which are then combined under the canonical form by image 
subtractions and cascaded convolutions to produce the desired filtering operation. 

Size and relative size of objects are among the basic variables in image analysis, it is essential 
therefore for any image processing system to be able to extract scale related information. A 
powerful way to obtain scale-space information is through generating and analyzing multi-scale 
representations of the input data. Features at or below a given scale are normally extracted by 
convolution operators where the relative size of the image and the convolution kernel determines 
whether the feature will be extracted or suppressed. 

The CNN Universal Machine, can be used for multi-scale processing by making use of the 
dynamics of CNN analog computation and combining the results. By using the CNN to approximate 
the heat equation, the scale parameter of the linear diffusion scale-space is translated into the 
running time of a transient on the CNN. Scale-space filters of theoretically arbitrary size can be 
implemented by this method. These filtered images can then be combined in a CNNUM context 
to produce images containing only selected feature scales. Such a solution allows for arbitrary 
quantization of the scale parameter as opposed to the coarse 1:2 ratio resulting from subsampling 
done by discarding every other sample. 

The investigated approach provides for easy generation of various multi-scale representations. In 
particular, it has been shown how the CNNUM can be used to approximate Gaussian and Laplacian 
multi-scale decompositions, as well as approximating the Continuous Wavelet Transform. 

Mathematical Study of CNN Dynamics 

During this period, we have also initiated a research effort to provide a rigorous mathematical basis 
for the CNN paradigm, especially for image processing applications. The questions which we would 
like to eventually answer include: 

1. When should we expect a CNN to have stable dynamics, i.e. when will the system settle 
to a steady state? This depends on the templates, the number of nodes in the system, and 
the value of the bias. Previously, we have obtained some results in this area (e.g. symmetric 
templates, cooperative templates), but some of the basic cases are still not fully understood. 

2. How does the qualitative behavior of the system change as the parameters are varied? For 
instance, what happens to an equilibrium as it is smoothly pushed out of the central linear 
region of state space? We believe that ideas from the field of bifurcation theory will be useful 
in answering these types of questions. 



3. Is there a systematic way to determine the functionality of a CNN from the system equations 
or template values? This is a very fundamental and important question, not only to prove 
that a particular template has the desired behavior, but because even a partial answer can 
be very useful in designing templates for various applications. We envision the development 
of a 'template calculus' which allows us to design CNNs with complex functionalities from 
combinations of simple templates. 

In our attempt to address such questions, we have obtained the following initial results. 
The two node cellular neural network (CNN) is the system described by the equations: 

x    -    -x + ba(x) + ca{y) + ix 

y    =    -y + ba{y) + aa(x) + iy 

where x and y are the activations of the cells, a, 6, and c are parameters (often referred to as the 
"A template"), ix and iy are the node inputs, and cr(s) is the function 

'(') = 

-1    if a < —1 
s      if — 1 < s < 1 
1      if 1 < s. 

Thus a particular CNN is one where a, b, and c are chosen and fixed, and x and y are allowed to 
vary with time, subject to the differential equations above. In general, the inputs, ix and iy, may 
be either constant or allowed to vary with time. For the theorems stated below, ix = 0 and iy = 0. 

There is much experimental data about the behavior of CNN's, for two nodes or many nodes, but 
the mathematical model of them is not well understood for many possible sets of parameters, either 
with or without external inputs (ix and iy). There are some previous results which characterize 
the behavior of CNN's for various parameter values (for instance when a — c). We have extended 
this set of results as follows: 

Theorem 1 For a two node CNN with no inputs, if b < 1 then the system is convergent, with a 
global attractor at (0,0). 

Theorem 2 For a two node CNN with no inputs, in the parameter range given by b > 1, ac < 0, 
b < max{c + 1, —c+ 1}, and b < max{a-\-1, — a + 1}, there are at most two cycles which lie entirely 
outside the box \x\ < l,|y| < 1. 

The first result is an application of the divergence theorem. Unfortunately, this application is 
only valid in two dimensions. However, the knowledge that these systems are convergent may help 
to conclude that higher dimensional CNN's are also convergent when b < 1. The similarity of the 
behavior for all of these parameter values has led us to look for a Lyapunov function which will be 
valid whenever b < 1. This line of inquiry looks promising. If such a Lyapunov function is found, 
it is likely that it wiD be generalizable to higher dimensional systems. 

For the second result, the piecewise linear structure of the equations was exploited. Since the 
(x, y) plane may be divided into regions where the differential equations are linear, solutions may be 
written down which are valid as long as a trajectory stays within one of these regions. A complete 
solution may then (in theory) be constructed through any point (xo,yo). 

Unfortunately, there is a serious barrier to constructing the solution through a particular initial 
condition as a function of the parameters. To construct a solution, one starts with the knowledge 
of the general solutions to the differential equations that are valid in each region of the phase space 



(as mentioned above, the equations are linear in each region). Then one "steps" between particular 
solutions of these equations to construct a complete solution. This process involves finding the 
coordinates of the point where a particular solution through (xo,yo) intersects the boundary of a 
region. For most choices of (xo,yo), this would involve finding the zeros of a polynomial of degree 
\b — 1|, and so this procedure cannot be carried out in general. 

However, for some initial conditions, the equation is a polynomial of degree two rather than 
|& - 1|, and can be found in closed form. This makes it possible to find the Poincare (first return) 
map for the ray x — 1, y > 1, but only for points whose trajectories remain outside the center 
box. If one or more cycles exists entirely outside the center box (where |a;| < l,\y\ < 1) for the 
parameter values described in Theorem 2, then they will be fixed points of this map. The map is 
a composition of maps of the form (py + q)/(ry + t), so we may conclude that it has at most two 
fixed points, and thus at most two periodic orbits (which gives Theorem 2). 

The same methods which give Theorem 1 can be used to disallow some types of cycles for 
other parameter values, but we do not yet fully understand the possibilities in these cases. We are 
currently using these and other methods to characterize behavior in the remaining cases as fully 
as possible. Other work in progress includes calculating the boundaries of basins of attractions for 
systems with more than two nodes. This is computationally prohibitive for large systems, since the 
calculation involves solving 3" differential equations, but knowledge of how complicated the basin 
boundaries may be for smaller systems is likely to help with the understanding and design of larger 
cellular neural networks. 

List of New Publications 

[1] K. R. Crounse. Image Processing Techniques for Cellular Neural Network Hardware. PhD 
thesis, University of California, Berkeley, June 1997. 

[2] K. R. Crounse, L. 0. Chua, P. Thiran, and G. Setti. Characterization and dynamics of pat- 
tern formation in Cellular Neural Networks. International Journal of Bifurcation and Chaos, 
6(9):1703-1724,Sept. 1996. 


